HIV-2
Mutations associated with resistance | Mutations associated with « possible resistance » | |
ZDV |
Q151M
S215A/C/F/L/Y + 1 mutation among K65R, N69S/T, K70R, Y115F, K223R |
S215A/C/F/L/Y |
3TC/FTC | M184I/V | K65R |
ABC |
K65R
Q151M M184I/V + 1 mutation among: L74V, Y115F |
2 mutations among: D67N, K70N/R, M184V/I, S215A/C/F/L/Y |
TDF/TAF |
K65R
Q151M + V111I |
PROTEASE INHIBITORS [1]
Mutations associated with resistance | Mutations associated with « possible resistance » | |
LPV |
2 mutations among: I82F, I84V, L90M
I54M V47A |
V62A + L99F
1 mutation among: I82F, I84V, L90M |
DRV |
I50V
I54M I84V + L90M |
1 mutation among: I84V, L90M |
INTEGRASE STRAND TRANSFER INHIBITORS [1-6]
Mutations associated with resistance | Mutations associated with « possible resistance » | |
RAL |
N155H/R
Q148K/R/H [3,4,5] E92Q + T97A Y143C/G/R + 1 mutation among: E92Q, T97A Insertion at codon 231 [5] |
E92Q
Y143C/G/R G118R [6] R263K [6,7] |
EVG |
E92G/Q
Q148K/R/H [3,4,5] N155H T97A + Y143C Insertion at codon 231 [5] G118R [6] R263K [6,7] |
Y143C |
DTG |
Q148K
G140S + Q148R/H [3,4,5] E92Q + N155H T97A + N155H Insertion at codon 231 [5] G118R [6] R263K [6,7] |
Q148R/H [3]
N155H E92Q T97A + Y143C |
CAB* |
Q148K
G140S + Q148R/H [3,4,5] E92Q + N155H T97A + N155H Insertion at codon 231 [5] G118R [6] R263K [6,7] |
Q148R/H [3]
N155H E92Q T97A + Y143C |
BIC* |
Q148K
G140S + Q148R/H [3,4,5] E92Q + N155H T97A + N155H G118R [6] R263K [6,7] |
Q148R/H [3]
N155H E92Q T97A + Y143C Insertion at codon 231 [5] |
NON-NUCLEOSIDE REVERSE TRANSCRIPTASE INHIBITORS
Naturally resistant to all NNRTI [2] |
Naturally resistant to enfuvirtide [2] |
Naturally resistant to fostemsavir [8] |
CAPSID INHIBITORS
Mutations associated with resistance | Mutations associated with « possible resistance » | |
LEN | N73D [9] |
Q66H [9]
R69K [9] A76V [9] |
1/ Charpentier C et al. HIV-2EU-Supporting Standardized HIV-2 Drug-Resistance Interpretation in Europe: An Update. Clin Infect Dis. 2015 Jul 17. pii: civ572
2/ Witvrouw E et al. Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: implications for treatment and postexposure prophylaxis. Antivir Ther 2004; 9(1): 57-65.
3/ Smith RA et al. Three main mutational pathways in HIV-2 lead to high-level raltegravir and elvitegravir resistance: implications for emerging HIV-2 treatment regimens. PLoS ONE, 2012; 7.
4/ Smith RA, In vitro antiviral activity of cabotegravir against HIV-2. Antimicrob Agents Chemother. 2018 Jul 16. pii: AAC.01299-18. doi: 10.1128/AAC.01299-18.
5/ Le Hingrat Q et al. A 5 amino-acid insertion in the C-terminal region of HIV-2 integrase impacts phenotypic susceptibility to the five integrase inhibitors. 16th European Meeting on HIV & Hepatitis Treatment Strategies & Antiviral Drug Resistance, May 2018, Roma, Italy, Abstract 4.
6/ Smith RA, Wu VH, Song J, et al. Spectrum of Activity of Raltegravir and Dolutegravir Against Novel Treatment-Associated Mutations in HIV-2 Integrase: A Phenotypic Analysis Using an Expanded Panel of Site-Directed Mutants. J Infect Dis. 2022 Aug 26;226(3):497-509. doi: 10.1093/infdis/jiac037.
7/ Requena S, Lozano AB, Caballero E, et al. Clinical experience with integrase inhibitors in HIV-2-infected individuals in Spain. J Antimicrob Chemother. 2019 May 1;74(5):1357-1362.
8/ Lataillade M et al. Viral drug resistance through 48 weeks, in a phase 2b, randomized, controlled trial of the HIV-1 attachment
inhibitor prodrug, Fostemsavir. J Acquir Immune Defic Syndr. 2018 Mar 1;77(3):299-30
9/ Bertine M. et al. Rapid Selection of HIV-2 Capsid Mutations After Failure of a Lenacapavir-Containing Regimen, CROI 2024, Abstr. 682